河北双欧管道制造有限公司

诚信通
全国咨询热线:13785791117

当前位置: 首页 >> 行业资讯 >>

大口径冷聚氨酯保温弯管技术

发表时间2016-10-01

   

    弯管机研制、试验及应用过程中,对如何保证冷弯管的质量进行了深入的研究和测试,从冷弯管内侧面的褶皱(即波浪)、横截面的椭圆度、横截面的平面度、冷弯管表面的防腐层4个方面分析了了冷弯管产生缺陷的原因并提出了相应的控制措施。  关键词:长输管道;大口径;冷弯管;缺陷;控制措施  大口径冷弯管是长输管道施工中常用的管件,是根据管线实际走向,实测所需弯管角度,利用垂直液压弯管机现场制作而成的。进人21世纪,我国长输管道工程建设发展迅速,而且我国地貌复杂多样,管道沿线山地丘陵多、平原少,冷弯管的需求量相当大,但由于许多参加施工的单位缺少生产冷弯管的经验,对如何制作高质量的冷弯管,尚处于摸索阶段。作为冷弯管机生产厂家,我们在弯管机研制、试验及应用过程中,就如何保证冷弯管弯制质量进行了深人的研究和测试,对冷弯管常见缺陷进行了分析并提出了控制措施,供大家借鉴。 一、冷弯管的成型机理  每根冷弯管都是通过若干次弯制完成的。将钢管置于弯管机上,弯管机对钢管施以弯曲力矩,使钢管局部发生适量变形,形成一定的角度,达到弯制目的,其基本过程是:后端夹具夹紧钢管(固定支点),然后通过前端下模主油缸的支点(活动支点)向上运动,使钢管沿上模曲线中部(固定支点)弯曲变形,直到弯制成型。  在弯制过程中钢管的变形发生在上模上,上模起胎具的作用,其曲线根据不同规格、不同材质的钢管塑性变形的临界值确定。卢以不同的钢管对应不同的上模。  二、弯管基准点设定      弯管基准点设定的正确与否,直接影响弯管的成败。因此,迅速、正确的设定弯管必须的四个基点,是弯管的关键。  (一)胎芯—顶模基准点设定      胎芯必须准确地定位在顶模下,并在每次弯曲时都保持在此位置。否则,钢管会出现变形或其它破坏,因为在操作过程中胎芯是深人钢管内部的,操作手不能用眼睛看到胎芯。这就要求用一个外部的基准来正确定位胎芯在顶模下的准确位置,这样就不用向钢管内部看胎芯位置。胎芯的头部边缘应超出顶模前端300mm。胎芯定位好后,应在胎芯前端系上一细钢丝绳,在弯管机前端12m处予以打桩固定。
    二)弯曲间隔基准点设定      在弯曲过程中,钢管在事先确定的间隔下在弯管机上向前推进,在每一间隔都弯曲同样的角度,间隔的数量通常为300mm,并用石笔或记号笔标在钢管面向操作手的一侧,以便操作手很容易地看到标识。钢管每推进一次都停下来进行下一次弯曲,在弯曲外胎的衬里上也应标上间隔基准,以便俐管的间隔基准有一个参考。正确的间隔基准与钢管的型号、直径和壁厚有关。  (三)钢管水平基准点设定      钢管每次弯曲的角度是在两个基准之间测量的,水平基准与弯曲基准。如果没有水平羞准,就不会有测量角度的起点,致使无从量起。两个基准都应建立并标在外侧液压缸的计量杆上。  1、小心地向前推动弯曲外胎操纵杆,直到弯曲外胎托着钢管轻轻地接触顶模为止,然后放开阀杆,使钢管回到原来位置。      2、向前推动栓紧外胎操纵杆,使栓紧外胎向上夹着钢管,然后松开操纵杆,保持栓紧外胎的位置不动。      3、测量顶模前端的底边到管顶的距离,然后测量其后端底边到管顶的距离。对比这两个结果,一个测量尺寸应比顶模后端的测量尺寸小6—7mm。这样可使钢管在顶模的中前部开始弯曲(如果钢管先从顶模的后半部开始弯曲会发生变形)。如果前端的尺寸较大,轻微降低栓紧外胎,提高一点弯曲外胎,重新测量其距离,直到所要求钢管水平位置符合要求为止。当弯管机内的钢管处于水平时,然后标在刻度杆上。这个标志是刻度杆上的两个基准标志之一。另外一个标志是用来测量每次推进(弯曲)的角度的量。 三、冷弯管缺陷产生的原因及控制措施  根据SY0401—98《输油输气管道线路工程施工及验收规范》对冷弯管成型工艺的要求,从以下4个方面控制冷弯管的缺陷:冷弯管内侧面不允许有褶皱(即波浪);横截面的椭圆度不应大于2%D(被弯钢管公称直径);根据设计要求,横截面的平面度不应超标;弯制过程中不损伤管件表面的防腐层。  (一)褶皱控制 1、原因分析  钢管变形过程中内壁单元体受力情况如图1所示。由图1可知,钢管发生变形部位的内壁处于自由状态,所以管内壁极易发生失稳变形,加上内胎后,使管壁受力平衡,从而减小了失稳变形的趋势。在弯制中,内胎芯的正确使用非常关键。内胎所处的位置状态(轴向位置和垂直度)是否正确,以及能否根据不同管壁厚度正确调整内胎工作直径都会直接影响弯管质量。
     图1 钢管内弧管壁单元体受力情况  2、控制措施  根据产生褶皱原因,我们从两个方面控制:一方面是在弯制过程中内胎不能放置在靠近前夹具一侧,而应放在靠近下模弯曲缸一侧,且内胎后部超出上胎后部150mm左右。同时在进行前3次弯曲时,弯曲缸的升程不宜过大,在后步工序中弯曲缸升程应逐渐递增,直到钢管接触到上胎弧线高点为止,这样可以使钢管在弯曲过程中能平缓过渡,保证钢管不发生失稳变形。另一方面是在弯制钢管前调整内胎,试弯一根管时,内胎必须处于自锁位置,撑住钢管内壁后方可进行弯制。通过采取以上措施,就可以保证钢管不出现褶皱(或波浪)。  在弯制中,我们发现,内胎轴向位置不易控制,因此设计制作了一个示位小车,用一标杆将内胎与小车进行刚性连接。当内胎与上模中心线重合时,记下小车的相对位置,一次弯曲作业完毕钢管向后轴向移动时,连同内胎和小车一起向后移动一个作业长度,而后松开内胎胀紧机构,启动内胎马达,使内胎连同小车一起向前移动,直到小车回到原始标定位置。为了控制内胎垂直度,我们采用了示位指针,将其固定在连接标杆上,同时在管口划出示位标记,当示位指针发生偏转时,及时将内胎退出并进行人工校正。  (二)椭圆度控制 1、原因分析  钢管弯制时,其受力情况如图2所示。钢管弯曲时,内侧受压应力、外侧受拉应力、中性层上应力在理论上等于零,钢管处于受力不均状态。平行于弯曲方向的直径有变小的趋势,而垂直于弯曲方向的直径有增大的趋势,所以钢管受弯曲力矩时,尤其是薄壁钢管,极易发生椭圆变形。而管口的椭圆成因主要是由于其处于轴向自由状态,管口钢性差,即使未受到相当大径向力的作用,也会发生椭圆变形,薄壁大口径钢管尤为明显。 
 
 河北双欧管道制造有限公司  15133770031

推荐产品

聚氨酯保温管生产厂家,保温管厂家
网站地图 xml